

Figure 4.—Effect of temperature on observed rotation at 589 m μ and various pressures for a 4.330 wt. C_{c} solution of PBG in a 76:24 vol. C_{c} solvent of DCA and EDC, respectively.

adequately determined without resorting to special methods.

The effect of pressure on fraction f noted in Figure 5 yields an average value of -4.6×10^{-4} /atm. for $(\partial f/\partial P)_{T,f=1/2}$ with T approximately 296°K. Using Zimm and Bragg's value for σ (2 × 10⁻⁴), the ΔV_m " is found to be -0.6 ml./mole of monomer or -0.003 ml./g., which substantiates the difficulty encountered in the attempt of the direct determination. It should be noted that ΔV_m ° is negative which means that the folded configuration has a slightly larger partial molar volume than does the unfolded form.

If Zimm's value of σ is used with the experimental evaluation of $(\partial f/\partial T)_{P,f=1/2}$ at the center of the transition, then $\Delta H_{\rm m}^{\circ}$ may be calculated for the three pressure determinations using eq. 4. Table I summarizes the results. Values of $\Delta H_{\rm m}^{\circ}$ are seen to increase with increasing pressure and transition temperature. Since $\Delta V_{\rm m}^{\circ}$ is very small, we shall assume the variation of $\Delta H_{\rm m}^{\circ}$ is governed by the change in temperature and $\Delta C_{\rm p}$. This yields a value of approximately 140 cal./mole-deg. This finding might be explained by noting that the helical configuration has less degrees of freedom than the coiled form.

As may be noted in Table I, the transition tempera-

Figure 5. Effect of temperature on helical fraction (f) of PBG at various pressures.

1020

25.9

Table 1			
Transition temp., °C.	Press., atm.	$\begin{array}{c} (\sqrt[3]{o} f / \sqrt[3]{o} T) f = \frac{1}{2} \\ \times \sqrt{10^2} \end{array}$	$\Delta H_{ m m}{}^{ m o}~\pm~20\%,$ cal,/mole
20.2	1	\$1.5	-1400
24.1	680		-800

ture was found to increase by the effect of increasing pressure and yields a value of 5.6 \times 10⁻³ deg./atm. for $(\delta T/\delta P)_{f^{-1/2}}$. By eq. 5 the positive sign of this result shows that both $\Delta H_{\rm m}{}^{\circ}$ and $\Delta V_{\rm m}{}^{\circ}$ must have the same sign. Since $\Delta V_{\rm m}{}^{\circ}$ has been shown to be negative, $\Delta H_{\rm m}{}^{\circ}$ must also be negative. This is in agreement with the known negative value of $\Delta H_{\rm m}{}^{\circ}$, 15,16

Although it has been possible to determine the effect of pressure on the helix-coil transition of PBG and thereby calculate an expected change of $\Delta V_{\rm m}$ °, the smallness of the calculated $\Delta V_{\rm m}$ ° makes a direct determination highly unfavorable. It therefore appears that a direct evaluation of the σ -parameter for this transition will have to depend upon the direct measurement of the enthalpy change in conjunction with the effect of temperature on the transition. ^{15,16}

-600